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Introduction
“In the beginning there were only probabilities.”

— Martin Rees



This is a ket (it's a vector)

&

It represents a quantum state.



Perhaps we are talking about the spin of an electron.

It can be up or down.



We can write a quantum state in terms of some basis

=al|l)+ 0

The up and down states form a complete orthogonal basis for an
electron spin state.



These are called amplitudes

They are complex numbers.



9) =)+ 0

Think of each state as an outcome of a measurement

*



We get the probability of the outcome if we square the amplitude.

al? + |82 =1

So all of the probabilities must sum to 1.

*



Here is what | want you to think when you
see this equation:

) = L (1) + 1))

“¢ is a state such that, if measured (in this basis)
there is a 50% chance of measuring spin up and
50% chance of measuring spin down.”

*



Two-particle states

Given two particles with states |¢) and |¢), their total state is

0) R ) = o) ¢

We will omit the ®.



While a quantum state can refer to all types of physical situations
(electron spin, photon polarization) and can have a basis with
more than two vectors, we will focus mainly on states with 2 basis
states. Spin—% particles are the common example (electrons,
neutrons, other elementary fermions) and what we will use.

*
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Entanglement
“...not one but rather the characteristic trait of quantum

mechanics”

— Erwin Schrédinger, on entanglement
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Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?

— 1935 - A. Einstein, B. Podolsky, N. Rosen
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Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?

— 1935 - A. Einstein, B. Podolsky, N. Rosen

Entangled singlet pair
“EPR paradox”

*

19



Let's start by looking at the following two-particle state:

[T1) = —=(111) H2) + 1) [12))

7
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Let's start by looking at the following two-particle state:

) = (1) o) + a) )

5

Subscript means between particles 1 and 2
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Let's start by looking at the following two-particle state:

1

¢

[T1y) = —=(111) ) + 1) [12))

S

1
== 50% probability (distributed to both states)

V2
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Let's start by looking at the following two-particle state:

o) = j§< + )

The two possible outcomes of a measurement of this system.

*
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What is entanglement mathematically?

Meet Alice and Bob



What is entanglement mathematically?

L
V2

Alice has particle 1, Bob has particle 2.

[T8) = —=(I11) Ha) + 1) [12))
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What is entanglement mathematically?

L
V2

Alice has particle 1, Bob has particle 2.

[T8) = —=(I11) Ha2) + 1) [12))

1=



1
V2

Alice has particle 1, Bob has particle 2.

[T1) = —=(I11) H2) + Ha) [12))

Let's suppose that Alice makes a measurement of her particle
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What is entanglement mathematically?

1T1) H2)

Her result chooses an outcome.

1=



The state we just looked at is a Bell state. The Bell states are:

"I’T2> =
"1’1_2> =
|q);r2> =

|(I)f2> =

(1) W) + ) 1)
5t liz) = 42} 1)
5T 12) + 42} )
5T 12) = 42} )

Bell states are the maximally entangled states for two spin—%

particles.
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Using entanglement for quantum
teleportation

“...our teleportation, unlike some science fiction versions,
defies no physical laws”

— Bennett et al.
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Let’s start with some context. Our goal is to somehow give
someone else an unknown quantum state that we have.
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Let’s start with some context. Our goal is to somehow give
someone else an unknown quantum state that we have.

The no-go theorems:

No-cloning theorem (no-broadcast theorem)
No-teleportation theorem

Physical-transfer-of-a-quantum-state-is-prone-to-corruption-
and-attenuation theorem
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Quantum teleportation:
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Quantum teleportation:

Like a fax machine
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Quantum teleportation:
Like a fax machine where you shred the document immediately
after faxing it.
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The setup
Let’s start with the basics - first, we invite Alice and Bob back into
the picture.
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The setup
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The setup

Let's start with the basics - first, we invite Alice and Bob back into
the picture.

Alice has a particle in the state |¢1). Call it particle 1

We also need an entangled pair, of particles 2 and 3.

oy L
’ 23>_ﬁ

We give particle 2 to Alice and particle 3 to Bob.

(IT2) [43) — H2) [13))

*
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The goal

Give Bob the state |¢), so that his particle 3 is in the state |¢3).

*
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So we now have a system of three particles

Alice Bob
particle 1 particle 3 (entangled with 2)
particle 2 (entangled with 3)
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So we now have a system of three particles

Alice Bob
particle 1 particle 3 (entangled with 2)
particle 2 (entangled with 3)

The state of this system is

1) |Wos
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So we now have a system of three particles

Alice Bob
particle 1 particle 3 (entangled with 2)
particle 2 (entangled with 3)

The state of this system is

01) |Woq

Note that the state of particle 1 is separable from the entangled
state of particles 2 and 3.
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For definiteness let's write our unknown state |¢1) in the standard
basis:

[$1) = a|T1) + B 1)
where |a|? + |82 = 1.
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For definiteness let's write our unknown state |¢1) in the standard
basis:

|f1) = a[t1) + B 1)

where |a|? + |82 = 1.
Using this we can rewrite the total state as

161) [ T3 = (1) + 3 um}ium [4a) — ) [13))

(\T1> [T2) [43) = [T1) 2) [13))

%\

(U1> 112) [$3) — H1) H2) [13))

%\

*
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Going through the steps

Ok so now what?
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Ok so now what?
We want to get particle 1 involved

*
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Time for a change of basis

%(Hﬁ [12) [$3) = [11) [42) |T3))+\%(|¢1> [12) H3) —[41) H2) [13))

*
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Time for a change of basis

%( [11) [12) Wa)— [1) Ha) )+ = o) ) Had— [ba) la) ITa))
—— ——

—— \/5

We can write these in terms of the Bell states!
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Time for a change of basis

%( |T+1> \T27> [V3)— |T+1> \¢27> |T3>)+j§( |¢+1) \T27> [V3)— |¢+1> |¢2;> 13))
|‘I’12>;§“1>12> “1’12>;§“1’ 2! |‘I’12>\;§|‘I’12> “1’12>\;§|©12>
Like so

T






|‘1’1 alts) = Bs3))

2) (—a

+|‘I’ o) (—a[t3) + B s))

+|@3,) (B13) + alls))
2) (—

+125) (=B 13) + a[ls))
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Too much!
Let's look at one of the terms:

\}1 1U5) (—alts) — BlLa))
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Too much!
Let's look at one of the terms:
1

This term has a 1/4 chance of being the outcome of a
measurement in the Bell basis on particles 1 and 2

Vo) (—alts) = BIs3))
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Too much!
Let's look at one of the terms:

\}1 03) (—alts) — B la))

This is a Bell state! So in this outcome, particles 1 and 2 end up
entangled.
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Too much!
Let's look at one of the terms:

\}1 ¥15) (—a[f3) = B a))

Hey, what does this remind us of?
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Too much!
Let's look at one of the terms:

\}1 |U1) (—alts) — Bs))

Hey, what does this remind us of?
Remember, the desired outcome is |¢3) = a[T3) + B |)3)

*
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If we look at this monster again, we notice that all the terms look
similar to the one we just looked at!

21w (atts) - B1Ls)

+[95) (—a|t3) + B 113))
+@3,) (B13) + alls))

+95,) (=8113) + ai3))

*
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5 (—alts) — B11s))

+ U5 (—a|ts) + B1ls))
+|P7) (B |13) + a[{3))

+|®15) (—B113) + a [I3))

So in this Bell state basis, if we make a measurement on particles 1
and 2, we have four equally-likely outcomes.
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2 [1w) (alts) - 1)

+[075) (—alts) + 8 [s))
+[015) (BI13) + alls))

+|®75) (=B |13) + a|{3))

So in this Bell state basis, if we make a measurement on particles 1
and 2, we have four equally-likely outcomes.

In each outcome, particles 1 and 2 end up in a Bell state
(entangled)

21



1
5| 1952) (—ats) = B113)

+ |\Iji~'2> (—a|13) + Bds))
+]®%) (B [13) + a|ls))

+19%h) (=B 7s) + o ls))

So in this Bell state basis, if we make a measurement on particles 1
and 2, we have four equally-likely outcomes.

In each outcome, particles 1 and 2 end up in a Bell state
(entangled), and particle 3 is placed into a pure state very similar

to |¢3).
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[Wio) (= |13) — BI3))
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So in this Bell state basis, if we make a measurement on particles 1
and 2, we have four equally-likely outcomes.

In each outcome, particles 1 and 2 end up in a Bell state
(entangled), and particle 3 is placed into a pure state very similar
to |¢3).

SO CLOSE!
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) (alts) — B1Ls)

+95) (—a|ts) + B1is))
+|P7) (B |13) + a[{3))

+|®15) (—B113) + a [I3))

So in this Bell state basis, if we make a measurement on particles 1
and 2, we have four equally-likely outcomes.

In each outcome, particles 1 and 2 end up in a Bell state
(entangled), and particle 3 is placed into a pure state very similar

to |p3).
SO CLOSE!!
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Here is the state of particle 3 in each outcome:

Outcome 1

—a|ts) — B 3)

Outcome 2

—a|ts) + B 3)

29D

Outcome 3

Blts) +alls)

Outcome 4

—B[13) + I3)



If we use the basis {(‘T§>) ) <|£’>>>} we can write |¢3) = (g)

Outcome 1

—a|t3) — B 3)

Outcome 2

—a|t3) + B [3)

29

Outcome 3

B113) + alls)

Outcome 4

—BIt3) +alis)



If we use the basis {<‘TS’>) ) (|£9>>>} we can write |¢3) = <g>

So then we can write these states as:

Outcome 1

—a|t3) — B 3)

Outcome 2

—a|t3) + B [3)

29D

Outcome 3

Bl13) + alls)

Outcome 4

—B113) + alls)



If we use the basis {<‘T§>> ) <|¢2>>} we can write |¢3) = <g>

So then we can write these states as:

Outcome 1

—alt3) — B s)
1

(55)
i
= |¢s3)

Outcome 2

—at3) + B s)
I

<_zfa>

<_01 (1)> |¢3)

29

Outcome 3

BIts) + alls)

Outcome 4

—B13) + alls)



Let's look at the state of particle 3 in the first outcome. It is

— [¢s3)
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Let's look at the state of particle 3 in the first outcome. It is

— [¢s3)

Any state in the form €% |¢) is for our intents equivalent to |¢) as
¢'? is just some overall phase. It does not affect the behaviour of
the outcomes relative to each other.
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Let's look at the state of particle 3 in the first outcome. It is

— [¢s3)

Any state in the form €% |¢) is for our intents equivalent to |¢) as
¢'? is just some overall phase. It does not affect the behaviour of
the outcomes relative to each other.

—|¢3) = €' |¢3) = |@3)

So in the first outcome, Bob's particle is in the state |¢3) already!!!
We can teleport a quantum state... well, 1/4 of the time.

*
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Looking at the other three 3 outcomes, we notice that each
matrix, when squared, is either the identity matrix I or —I.
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Looking at the other three 3 outcomes, we notice that each
matrix, when squared, is either the identity matrix I or —I.

So we can apply an operation (via a quantum gate) described by
such a matrix to end up in the state |¢3).
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Looking at the other three 3 outcomes, we notice that each
matrix, when squared, is either the identity matrix I or —I.

So we can apply an operation (via a quantum gate) described by
such a matrix to end up in the state |¢3).

So for example, for the fourth outcome:

0 -1\ /0 -1 -1 0
Once again we can ignore the negative sign.

*
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So we can teleport! Alice just needs to notify Bob of her result.
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So we can teleport! Alice just needs to notify Bob of her result.
4 = 22 outcomes requires 2 classical bits.

*
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Objective Alice wants to send the quantum state |¢1), currently
on particle 1, to Bob.
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Objective Alice wants to send the quantum state |¢1), currently
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Prerequisites Alice and Bob need to share an entangled pair.

1.

Start with an EPR singlet of the form
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particles 2 and 3.
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Objective Alice wants to send the quantum state |¢1), currently
on particle 1, to Bob.
Prerequisites Alice and Bob need to share an entangled pair.

1.

6.

Start with an EPR singlet of the form

|Wos) = %(|T2> [43) — [42) [T3)) - an entangled state between
particles 2 and 3.

Alice takes particle 2, Bob takes particle 3.

Alice makes a measurement on her two particles (1 and 2) in
the Bell operator basis. There are four equally-likely outcomes.
Alice encodes her result in 2 bits and sends it to Bob (directly
or via broadcast).

Based on Alice's result, Bob applies a quantum gate of some
sort to his particle 3, or simply does nothing.

Bob's particle 3 is now in the state |¢3) as desired.

Side effects Particles 1 and 2 are now entangled in a Bell state.

*
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The comedown
“Beam me up, Scotty”

— Captain Kirk
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So where are we at?
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So where are we at?
Is teleportation actually possible?
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So where are we at?
Is teleportation actually possible?

Yes.
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Questions?
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